Radial-searching contour extraction method based on a modified active contour model for mammographic masses.
نویسندگان
چکیده
In this study, we developed an automatic extraction scheme for the precise recognition of the contours of masses on digital mammograms in order to improve a computer-aided diagnosis (CAD) system. We propose a radial-searching contour extraction method based on a modified active contour model (ACM). In this technique, after determining the central point of a mass by searching for the direction of the density gradient, we arranged an initial contour at the central point, and the movement of a control point was limited to directions radiating from the central point. Moreover, it became possible to increase the extraction accuracy by sorting out the pixel used for processing and using two images-an edge-intensity image and a degree-of-separation image defined based on the pixel-value histogram-for calculation of the image forces used for constraints on deformation of the ACM. We investigated the accuracy of the automated extraction method by using 53 masses with several "difficult contours" on 53 digitized mammograms. The extraction results were compared quantitatively with the "correct segmentation" represented by an experienced physician's sketches. The numbers of cases in which the extracted region corresponded to the correct region with overlap ratios of more than 81 and 61% were 30 and 45, respectively. The initial results obtained with this technique show that it will be useful for the segmentation of masses in CAD schemes.
منابع مشابه
Active Region Segmentation of Mammographic Masses Based on Texture, Contour and Shape Features
In this paper we propose a supervised method for the segmentation of masses in mammographic images. The algorithm starts with a selected pixel inside the mass, which has been manually selected by an expert radiologist. Based on the active region approach, an energy function is defined which integrates texture, contour and shape information. Then, pixels are aggregated or eliminated to the regio...
متن کاملAn Efficient Method for Breast Mass Segmentation and Classification in Mammographic Images
According to the World Health Organization, breast cancer is the main cause of cancer death among women in the world. Until now, there are no effective ways of preventing this disease. Thus, early screening and detection is the most effective method for rising treatment success rates and reducing death rates due to breast cancer. Mammography is still the most used as a diagnostic and screening ...
متن کاملStudy of Mammographic Lesions Decomposition Using Gabor Filter
This research describes a mammographic lesions using wavelet based active contour model. The sensitivity of the breast cancer detection was analyzed by mammography. Wavelet based decomposition techniques are used and tested for decomposing the noise present in the mammographic lesions. Gabor filtering method is used to reduce the unwanted noise obtained in the mammographic lesions by automated ...
متن کاملMammographic mass segmentation: Embedding multiple features in vector-valued level set in ambiguous regions
Mammographic mass segmentation plays an important role in computer-aided diagnosis systems. It is very challenging because masses are always of low contrast with ambiguous margins, connected with the normal tissues, and of various scales and complex shapes. To effectively detect true boundaries of mass regions, we propose a feature embedded vector-valued contour-based level set method with rela...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiological physics and technology
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2008